Using techniques of geovisualization, GIS provides a far richer and more flexible medium for portraying attribute distributions than the paper mapping.
This documentation is all about the visualisation of geo spatial data of Visakhapatnam city.
First of all,let us display Visakhapatnam Boundary map with wards.
import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt
pd.options.display.max_rows = 10
import io
ward_map = geopandas.read_file('/Users/navjoth/Downloads/Ward_Boundary.shp')
ward_map.plot(figsize=(9,9))
ward_map['SHAPE_Area'].plot(kind='bar',color="blue",figsize=(20, 8),width=1,align='center')
plt.title('Wards Area representation')
plt.xlabel('Ward Numbers ')
plt.ylabel('Area in msq')
Built Up Areas like commercial,residential,Industrial,etc areas comes under Land use .
Lets visualize those data.
import io
commercial_area = geopandas.read_file('/Users/navjoth/Downloads/geovisual/boundry_line.shp')
commercial_area1 = geopandas.read_file('/Users/navjoth/Downloads/geovisual/Commercial.shp')
df = pd.DataFrame(commercial_area1,columns=['Class','Name','Area']).head()
print(df)
#commercial_area1.loc[0, 'geometry']
commercial_area1.plot(figsize=(8,9))
commercial_area['Density'].value_counts().plot(kind='pie',
figsize=(5, 6),
autopct='%1.1f%%',
startangle=90,
shadow=True,
)
plt.title('Density of the commercial areas')
plt.axis('equal')
plt.show()
import io
industrial_area = geopandas.read_file('/Users/navjoth/Downloads/Industry.shp')
df = pd.DataFrame(industrial_area,columns=['Class','Name','Area'])
print(df)
industrial_area.plot(figsize=(12,12),color="darkblue")
#commercial_area.loc[0, 'geometry']
import io
resi_area = geopandas.read_file('/Users/navjoth/Downloads/geovisual/builtup.shp')
resi_area.plot(figsize=(22,22),color="darkblue")
df = pd.DataFrame(resi_area,columns=['Class','Name','Area'])
print(df)
resi_area['Class'].value_counts().plot(kind='bar',color="yellow",figsize=(16, 6),align='center')
plt.title('Types of Built up Areas')
plt.xlabel('Builtup Type ')
plt.ylabel('Area in msq')
resi_area['ZONE'].value_counts().plot(kind='pie',
figsize=(5, 6),
autopct='%1.1f%%',
startangle=90,
shadow=True,
)
plt.title('Zonewise distribution of builtup')
plt.axis('equal')
plt.show()
Thus from the above visualisation,we can conlclude that most of the builtup area occupied by residential land only.From the above piechart we can see maximum part of builtup comes in Zone 5.